JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 41

INHOMOGENEQUS ELASTIC MEDIUM WITH NONLOCAL INTERACTION

I. A. Kunin

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 3, pp. 60-66, 1967

In [1] the author examined a macroscopically homogeneous elastic
medium of simple structure with spatial dispersion, In that case the
assumption of the existence of an elementary unit of length and long-
range forces conditioned the nonlocalizability of the theory, and the
macroscopic homogeneity was manifested in the invariance of the in-
tegral operators under shear (difference kernels).

In this paper the more general model of an inhomogeneous elastic
medium of simple structure with nonlocal interaction is constructed,
In §1 the existence of a symmetric stress tensor is proved with broad
assumptions, and the corresponding operator Hooke's law is written
down, As a corollary, the usual expression for the energy density is
obtained. In §2 the case of point defecis is considered, An explicit
expression is found for the Green's tensor for a medium with point
defects in terms of the Green's tensor for the homogeneous medium.
with the help of the Green® tensor the self-energy of the defect and
the energy of the interaction force are calculated,

1. As in [1], we will assume that the state of the
medium is completely determined by specifying the
displacement field u,, (%) (@ = 1,2, 3)(simple structure),
where x is a point of the medium. We introduce the
notation

|y =\u@ 1 (2) dr = g \ W@ F By k= F

uy,

ul®@|f> = Sgu(x)‘(D(:c, 2y f@')ydeds' =

:a%g%m(mk, K)f () dkdk =@ Twy, (1.1)
where u, f, ® must satisfy certain constraints of a
function-theory nature for the corresponding function~
als to be meaningful.

Here and in what follows u(k) denotes the Fourier
transform of u(x), which is to be understood, if ne-
cessary, in the sense of generalized functions; ®(k, k')
is the Fourier transform of &(x, x') with respect to x
and the Fourier original with respect to x'; &*(k, k¥) =
&(k, k'), where the bar denotes complex conjugation.

In this notation the most general model of an in-
homogeneous linear-elastic medium of simple struc-
ture is described by the Lagrangian

2L = Cus | pg™® [up’y — {ua | D ugy L 2<us g2y, (1.2)

Here, p(x) is the density, gO‘B(X) the metric tensor,
q%(x) the external force density, and ®@B(x, x!) the
kernel of the elastic energy operator, which may also
be interpreted as the force constant matrix [1}. Ob-
viously, in this case the Hermitian condition & = ot
must be satisfied or, in more detailed form,

QO (, o'y = O (&', ), @ (k, K)=O (&, k). (1.3)

The corresponding equations of motion have the
form

p(x) g™ (Y uy" (0) — g O™ (r, Yy (s’ = g% (2).,  (1.4)

In [1] it was shown that in a homogeneous medium
of simple structure with nonlocal interaction it is pos-
sible to introduce a symmetric stress tensor. This
conclusion is not completely trivial, since in many
studies (see, for example, [2~5]) it has been asserted
that if in a medium of simple structure the dependence
of the energy not only on the strain but also on the
strain gradient is taken into account, it is necessary
to introduce an asymmetric stress tensor. (It can be
shown that such a model corresponds to making an
approximate allowance for nonlocalizability—weak
spatial dispersion.) A similar problem arises in the
case of an inhomogeneous medium with nonlocal in-
teraction.

We will start by assuming that the medium is in-
homogeneous only in a finite region. Then in a
Cartesian coordinate system we have the unique
representation

O (z, 2') = O, (z — &) + O (z, 2),

p(x)=po+pi(z) (1.5)

where 4)0055 (x) and py are the characteristics of the ho-
mogeneous medium, and the functions @1015 (x,x") and
p1(x) are finite.

Theorem. In an inhomogeneous medium of simple
structure with nonlocal interaction, given the assump-
tion of (1.5), we canintroduce a symmetric stress tensor
linked with the strain tensor by the operator Hooke's
law, together with the energy density expressed as
usual in terms of stress and strain.

Proof. From the conditions of invariance of the
energy under translation and rotation it follows that
@00‘3 (k, k') can be represented [1] in the form

(Dr;a'g k, k" = kK, crovd (k) 6 (k — kK > (1' 6)
{k, &) -

where cOVOlﬂB (k) is a tensor symmetrical with respect
to the first pair of indices, and coVaﬂﬁ(o) is the tensor
of the elastic constants of the longwave approximation
symmetrical with respect to the pairsvo, up and their
transposition. We will show that it is possible, without
loss of generality, to assume that covaﬂﬁ(k) is also
symmetrical with respect to the second pair and Her-
mitian with respect to transposition of the pairs. (This
possibility was not noticed in [1].)

We assume that this is not the case; then let

coar B (f) = ¢ (k) + ¢ DRI (E). 1.7)

Here, the parentheses and the brackets denote, as
usual, symmetrization and antisymmetrization. Ob-
viously, ¢, (#81(0) = 0 and, consequently, taking into
account the analyticity of c,V*#B(k)

Coqz[p.',J (k) — ]\J)_f'n"li""ﬂ‘ (]{.) s (1 . 8)
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where ¢,Y%#B(k) is a tensor antisymmetric with re-
spect to yB. The corresponding expression for the
elastic energy ®,can now be written in the form

2@ = (uq | Do*f fug) =
= (Byq | "B | 8ug> + (8ux [ Ca™ 8 | kyQpg). (1.9)

Here, €, k) = —ik(,,ua)(k) is the strain, Quﬁ(k) =

= —ik[“uﬁ] (k) the rotation. The first term in the right
side of (1.9) will not change if ¢,"% B (k) is replaced
by a tensor

avR = _%. o e(®-B) - ¢pte-BIve] (1.10)

having the necessary symmetry. Taking into account
the identity kyQ 5(k) = Zk[ugﬁp\, we rewrite the second
term of (1.9) in the form

<8vu [ azvap.ﬁ | 8p.{5> ’
where

agvomﬁ — _% ks (c”vczlpﬁ + o eAB -+ cop.ﬁ)\va -+ coﬁp.hva) (1. 11)

also has the symmetry of a8, Finally, combining
the two terms, we obtain the required result.

We now turn to the term éio‘ﬁ(x, x!) in (1.5). From
the assumption that it is finite it follows that <I>1O‘B(k,k')
is an entire analytic function of k, k!, By means of
reasoning similar to that conducted in [1], if is easy
to show that the condition of invariance of the energy
under tranglation is equivalent to the requirement that
éiaﬁ(k, k') be representable in the form

©28 (k, k') = ke g (k, k7). (1.12)
Here zpaBVn“(k, k') is an entire analytic function which
is uniquely determined by the assigned value of
@1‘13 (k, k') and satisfies the Hermitian conditions

VB (k, K') = e (k7 k), (1.13)

Let the medium be subjected to the action of some
equilibrated system of external forces and let ugy(k)

" be the corresponding displacement. Then from the
requirement of invariance of the energy under further
rotation of the medium as a whole we find the condition
on ¢*BPVH (the tensor co"OHB satisfies this condition):

Re (Quq | wB [k, 'ug) = 0. (1.4)
Here, Qva*(k)= . 6(k) is the infinitesimal rotation

given by the antisymmetric tensor CH It follows from
(1. 14) that the tensor

ot () = a8 (0, k) (1.15)
is symmetric with respect to the indices va.
We write ?PVE(k, k') in the form
Gl (k, k') = PP (K) - p2Pee (k, K7, (1.16)

where, obviously, zpzaBV“(O, k') = 0. Consequently,

o (h, ) = b Gk, K). (1.17)

In this case of the unique determination of
z/)zaﬁw‘”(k, k') from a given <I>10‘B(k, k') it is necessary
to require symmetry with respect to the indices vA.

We will determine the tensor

ex"e8 (, I) = Lo () o o (oo Gk, &) +

A+ pguBari (k. k') — PorReve (K, E7)]. (1.18)
From the properties of zpiaBV“ and ,%BY M there
follows the symmetry of ¢ ve i with respect to the
first pair of indices.
The identity

@28 (k, k') = Bk, 8% (I, &) = Feykeycr*o® (k, B') (1.19)

is directly verified.

Calculations similar to those for ¢,”*#P show that
oivauﬁ in (1.19) can be replaced by a tensor having
the symmetry of coVO‘ﬂB . Retaining the same notation
VOB | we write

B (g, 2') = cg*2b (z — 2') - "B (2, z'). (1.20)
For the elastic energy & we now have
20 = (&va |C"°‘p‘B [ 8p‘3>. (1 . 21)

Hence it follows that the equations of motion are
written in the form

p (x) 6%fug” (x) — 8y6™ () = ¢* (x) , (1.22)

where

o (2) = Scmw (@, %) epa (&) it (1.23)
Obviously, the symmetric tensor ¢V can be in-
terpreted as the stress tensor, and relation (1. 23) as

the operator Hooke's law.
Finally, from (1.21), using (1.23), we find that the
quantity

¢ (.’E) = 1[2 o%* ($) Eya (x) > (1 . 24)

which is invariant under rotation of the medium as a
whole, is the elastic energy density. This proves the
theorem.

Remarks, 1. Expression (1.24) shows that in this case the stress
tensor, in complete correspondence with the local theory of elasticity,
can also be defined as the generalized force corresponding to the
generaiized displacement—the strain tensor.

2, It follows from the proof that the finiteness of ;%8 (x,x") is
not a necessary condition. It can be weakened by assuming only the
analyticity of ,%B (k, k).

3. The fact that the displacement is the only function determining
the state of the medium was put to important use in the proof, there-
fore the latter does not extend to cases of internal stresses and media
of complex structure.

2. We will consider the important practical model
of point defects in a homogeneous medium with spatial
dispersion.

It is assumed that an elementary unit of length o
exists in the medium. This is equivalent to the as-
sumption that the Fourier transforms of admissible
functions are nonzero only in a certain finite neigh-
borhood B of the coordinate origin of k-space[1]. Thus,
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for a regular lattice the regionBis athree-dimension-
al torus, and for an isotropic medium (Debye model) a
sphere. In all cases the characteristic dimension of
the region B is of the order of ¢!,

We note one important consequence of the existence
of an elementary unit of length. In the case of admis-
sible functions the role of the §~function is played by
the regular function §(x), whose specific form de~
pends only on the region B. For example, for an
isotropic model (r = [X |, w=7ma" 1)

8y () = (2.1

# ( sin ®r

S | coswr)

and the expression for cSB(x) for a regular lattice is
given in [1]. When a— 0 the é-function coincides with
the usual form. In what follows the subscript B for
the §-function will be omitted.

We will start by assuming that a single defect ex-
ists in the medium at the point x = x;, and for the
time being we will confine ourselves to the case of
statics. Then the simplest model of a point defect
can be represented in the form (v = ¢°)

cvap.ﬁ (!L‘, x’) — Cva,‘.B (.’E . Z,) _+_

+ e B O\ & — 39) & (&' — ). (2.2)
Here, the tensor ci”aﬂﬁ has the dimension of a mod-
ulus of elasticity and characterizes the change in the
elastic properties of the medium in the neighborhood
of the defect. Comparison with (1.13) shows that cor-
rect to the multiplier v ¢{"**B coincides with ¢,28/#(0),
and 3, 2P MH = 0. Considering the symmetry of 3 *BH
and relation (1.8), we conclude that ¢;"*¥" is sym-
metric with respect to the indices of the first and sec-
ond pairs and with respect to {ransposition of the pairs,
i.e., has the symmetry of the usual elastic constant
tensor. We note that a more complex model of a point
defect is obtained if we include terms with derivatives
of the §-function in (2.2).

Assuming that the Green's tensor G°a (x — x'") for
a homogeneous medium is known, we will construct
the Green's tensor Ggg (x, x') for a medium with a
defect. In the case of an isotropic medium and, in
particular, for a Debye model the expression G°a 3 (x)
can be written in explicit form.

From (1.15), using (2.2) and (1.16), we find the
equation for the static Green's tensor

0§ (@) 9uGanty, &) dy +

0oy 3.8 (2 — o) 0uGas (T, ) = — 020 (z — 2). (2. 3)
Applying GQQB {x — x') to hoth sides gives

Gy (2, @) — 0170, Gay (& — o) 0,:Gy 3 (X0, &) =

=G (z — ). (2.4)

This expression contains the unknown quantity
B(TGW)B (x4 ,x'). In order to find it, we take the sym-
metricized gradient of both sides of the equation and

set x = x;. We obtain the algebraic equation

[6(’4161))\ + nga'/pclv'jhﬂ'] a\T.G)\) 3 (‘L‘Ua xl) =

=a\zG1) : (xuax/)s (2~5)

where

Bumvs = — 100G (0)] ) . (2.6)
Solving Eq. (2.5)and substitutingthe result into (2.4},
we write the final expression for Gozﬁ (x, x'} in the form

Gap (2, 2') = Gz (£ — ) +

F0,G a0, (& — To) P 03Gan (50 — ). (2.7)
Here, the constant tensor PVHAT has the symmetry
of the elastic constant tensor and is given by

P = (goune +v71b, 5L (2.8)
The tensor by, is the inverse of ¢ VHAT,

In deriving the expression for Gy (x, x") we im-
plicitly assumed the existence of an elementary unit
of length, As a result of this assumption G‘}XB (x) is
an entire analytic function [1] and the derivatives at
zero are finite, It follows from (2. 7) that Gy (x, x")
is also an entire function of x, x'. At the same time,
Gozﬁ (%, ") depends nonanalytically on the parameter
a. It is easy to show that VG (0) ~ ™2, g° ~ v~ 1! and,
consequently, P ~v. As a — 0 the second term in
(2.7) tends to zero as a° for the points x, x' # Xy, and
as ¢ for the points x = x, X' # x5 or x # x;, x'= X, and
tends to infinity as a~! for the point x = x;,, x'= x.

The dynamic Green's tensor for a point defect can
be similarly constructed. In this instance it is desir-
able to congider the two cases separately. If the den-
sity is constant and the defect is due only to a change
in the elastic properties of the medium, the expression
for the dynamic Green's tensor G,z (x, X', w), where
w is the frequency, coincides with (2.7) with GZ!B (x)
replaced by the dynamic Green's tensor of the homo-
geneous medium G"aB (x, w). Correspondingly, P will
be a function of w determined by the relation (2. 8).

In the other case, when c¢(x, x') = ¢;(x — x'), and
the density has the form

o (x) = pp + vpi6 (z — z,) , (2.9)
we find for the Green's tensor
Gaa (i, 0, 0) = Gag (v — &', ©) +
A Gy (1 — 29, @) P (0) Gy (0 — &, ©), (2.10)
where
P (0) = [(2010%) 8y, — Gy (0, @], (2.11)

The expression for the Green's tensor in the gener-
al case, when there is both a mass defect and an elas-
tic modulus defect, is rather clumsy and therefore has
been omitted.

We will now consider the case of several defects—
to be specific, defects of the elastic moduli. For sim-
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plicity, moreover, we will confine ourselves to writing
the static Green's tensor. Let

B (g, ') = g2 (x — 2) +

40 e 88 (r — ) 8 (& — ). (2.12)

Omitting the straightforward, but cumbersome
calculations, we give the final result

Gop (4, ') = Gup (x — ') +

4+ D 0Gap (& — 1) P 6,G e (25 — ). (2.13)
ij

Here, the matrix Pij is the inverse of the matrix
Rv}ij’l: = gv}:{‘r + U-]'é”bvf.“lr ]

(2.14)
where

Gt = — 10,0:G u= (% — ;) oy oy, (2.15)

and the tensors bJ rare the inverse of CJWM.

For the important case of two defects (i, j = 1, 2),
the expressions for calculating the components Pij
can be substantially simplified by representing them
in the form (i = j)

Py = (Ry— RyRiR;) ™,

Pi; = (R — R;Ri'R,)™. (2.16)

The Green's tensor for the case of mass defects
has a similar structure.

In conclusion, we present the equations for the
energy and interaction forces of the defects, which
are explicitly expressed in terms of the static Green's
tensor.

The energy & of an arbitrary system of external
forces of density q® (x) can be written in the form

20 = (o] 0"y = Cua| 4P = <¢*|Gap| ¢, (2.17)

Let a defect at the point x, be associated with a
force dipole of density

q* () = — Q" 3, (% — x). (2.18)

Here, Q"% = Q®" ig the dipole moment. Then for the
self-energy of the defect from (2.17) we find

20 = Q70" gurpe » (2.19)

where

Guaps = [0.0,'Gus (To, Zo)lvay (us). (2.20)

From (2.19) there follows, in particular, the phys-
ical significance of the quantity g% ug n (2.8).

In the case of a system of defects the total energy
is written in the form

20 = 3 00*8g.iha (2.21)
i
where
8.3 5 = [0:9,/Gup (T1s 290y 08). (2.22)

We note that inthe sum in (2.21) the terms with i=j
cannot be identified with the self-energy of the defect,
since in this case the Green's tensor is determined by
the totality of the defects.

The force acting on a defect at the point x = xy due
to the other defects is defined as

fr=——"_@. (2.23)

Iy
Oz,

Calculations give
¥ =z Q¥ Q P8 [6810,0,0, G ug (x4, Ij)—FGAgﬁ (z:, z3)], (2. 24)
ij

where

-

9

B
Bxk

Grag (@, 7') = — Gap(z, ). (2. 25)

REFERENCES

1. I. A, Kunin, "Model of an elastic medium of
simple structure with spatial dispersion, " PMM, vol.
30, no. 3, p. 542, 1966.

2. E. L. Aero and E. V. Kuvshinskii, "Basic equa-
tions of the theory of elasticity with rotational particle
interaction, ® Fiz. tverdogo tela, vol. 2, no. 7, p. 1399,
1960.

3. G. Grioli, "Elasticita asimmetrica, " Ann. mat.
Pura ed Appl., Ser. IV, vol. 50, p.382, 1960.

4. R. A. Toupin, "Elastic materials with couple-
stresses, " Arch. Rat. Mech. Anal., vol. 11, no. 5,
p. 385, 1962.

5. R. D. Mindlin and H. F. Tiersten, "Effects of
couple-stresses in linear elasticity,” Arch. Rat. Mech.
Anal., vol. 11, no. 5, p. 415, 1962.

2 January 1967 Novosibirsk



